Optimization and Experimentation of Dual-Mass MEMS Gyroscope Quadrature Error Correction Methods

نویسندگان

  • Huiliang Cao
  • Hongsheng Li
  • Zhiwei Kou
  • Yunbo Shi
  • Jun Tang
  • Zongmin Ma
  • Chong Shen
  • Jun Liu
چکیده

This paper focuses on an optimal quadrature error correction method for the dual-mass MEMS gyroscope, in order to reduce the long term bias drift. It is known that the coupling stiffness and demodulation error are important elements causing bias drift. The coupling stiffness in dual-mass structures is analyzed. The experiment proves that the left and right masses' quadrature errors are different, and the quadrature correction system should be arranged independently. The process leading to quadrature error is proposed, and the Charge Injecting Correction (CIC), Quadrature Force Correction (QFC) and Coupling Stiffness Correction (CSC) methods are introduced. The correction objects of these three methods are the quadrature error signal, force and the coupling stiffness, respectively. The three methods are investigated through control theory analysis, model simulation and circuit experiments, and the results support the theoretical analysis. The bias stability results based on CIC, QFC and CSC are 48 °/h, 9.9 °/h and 3.7 °/h, respectively, and this value is 38 °/h before quadrature error correction. The CSC method is proved to be the better method for quadrature correction, and it improves the Angle Random Walking (ARW) value, increasing it from 0.66 °/√h to 0.21 °/√h. The CSC system general test results show that it works well across the full temperature range, and the bias stabilities of the six groups' output data are 3.8 °/h, 3.6 °/h, 3.4 °/h, 3.1 °/h, 3.0 °/h and 4.2 °/h, respectively, which proves the system has excellent repeatability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed-Loop Compensation of the Quadrature Error in MEMS Vibratory Gyroscopes

In this paper, a simple but effective method for compensation of the quadrature error in MEMS vibratory gyroscope is provided. The proposed method does not require any change in the sensor structure, or additional circuit in the feedback path. The mathematical relations of the proposed feedback readout system were analyzed and the proposed solution assures good rejection capabilities. Based on ...

متن کامل

Mechanical Coupling Error Suppression Technology for an Improved Decoupled Dual-Mass Micro-Gyroscope

This paper presents technology for the suppression of the mechanical coupling errors for an improved decoupled dual-mass micro-gyroscope (DDMG). The improved micro-gyroscope structure decreases the moment arm of the drive decoupled torque, which benefits the suppression of the non-ideal decoupled error. Quadrature correction electrodes are added to eliminate the residual quadrature error. The s...

متن کامل

Research of Processing Errors on Modal Frequency of a Dual-mass Decoupled Silicon Micro-gyroscope

In this paper, the architecture, processing errors analysis and optimization method of a dual-mass silicon micro-gyroscope are presented. The dual-mass silicon micro-gyroscope consists of two identical single mass gyroscopes and a lever mechanism. Driving decoupling springs and sensing decoupling springs are key components to achieve motion decoupling. The processing error analysis indicates th...

متن کامل

Design and Application of Quadrature Compensation Patterns in Bulk Silicon Micro-Gyroscopes

This paper focuses on the detailed design issues of a peculiar quadrature reduction method named system stiffness matrix diagonalization, whose key technology is the design and application of quadrature compensation patterns. For bulk silicon micro-gyroscopes, a complete design and application case was presented. The compensation principle was described first. In the mechanical design, four typ...

متن کامل

ANFIS Approach for Tracking Control of MEMS Triaxial Gyroscope

In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) based control is proposed for the tracking of a Micro-Electro Mechanical Systems (MEMS) gyroscope sensor. The ANFIS is used to train parameters of the controller for tracking a desired trajectory. Numerical simulations for a MEMS gyroscope are looked into to check the effectiveness of the ANFIS control scheme. It proves that the sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016